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ABSTRACT

Temporal and spatial power spectra from computer simulations of
the equations modeling Type II irregularities in the equatorial elec-
trojet are presented. The power spectra are computed using the code
of Ferch and Sudan (1977), averaging over times as long as 20 seconds.
The dependence of the average frequencies and linewidths on wavelength
and angle from the electrojet drift is studied. The mean frequencies
obtained agree well with linear theory except at short wavelengths
while the linewidths are greater than those predicted by the linear
damping rates. The spatial power spectra were also computed and
found to be approximately isotropic. Favorable comparisons are made
with radar observations and the theory of Sudan and Keskinen (1977).
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INTRODUCTION

In the equatorial E region, radar backscatter observations have
shown irregularities in plasma density whose spectral width is often
comparable to the mean Doppler shift and whose phase velocities are
on the order of the electron drift speed [Balsley, 1969; Balsley and
Farley, 1971, 1973; Farley and Balsley, 1973; Fejer et al., 1975,
1976]. Many of the features of these Type II irregularities have
been explained with the linear theory of the gradient drift insta-
bility [Maeda et al., 1963; Knox, 1964; Reid, 1968; Rogister and
D'Angelo, 1970; Whitehead, 1971]. Both one-dimensional [Sato and
Tsuda, 1967; Sato, 1971, 1973; Rogister, 1972] and two-dimensional
[Sudan et al., 1973] nonlinear theories have been proposed to explain
the presence of the Type II irregularities with wavelengths that are
predicted to be linearly damped. The two-dimensional model has found
support both from experiment [Balsley and Farley, 1973; Farley and
Balsley, 1973; Fejer et al., 1975, 1976] and simulation [McDonald
et al., 1974, 1975; Ferch and Sudan, 1977].

Much of our understanding of the physics of the Type II irregu-
larities is based upon VHF radar observations, particularly the
spectral measurements. However, existing radars have studied only a
few wavelengths whereas the range of scale sizes of the Type II irregu-
larities is known to span at least two orders of magnitude. Spectra
from numerical simulations can be computed for many wavelengths and,

as a result, supplement experimental observation.
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We have extended a previous numerical study [Ferch and Sudan,
1977] and, using the same code, computed the temporal and spatial
] power spectra from simulations of the two-dimensional model. This

code is sufficiently fast that moderate spectral integration times

can be achieved. The numerically obtained temporal power spectra
favorably reproduces Type II radar spectra.

In this paper we first review the linear and nonlinear theory
of the Type II irregularities. Then we present the results of the
numerical simulations while making comparisons with experiment and
theory. Finally we summarize and discuss the principal results of

this study.
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LINEAR THEORY

For wavelengths of more than a few meters, the E region electrojet
plasma can be described as an electron and singly charged ion fluid,
The fluid equation can be simplified by making the following assump-
tions:

1. The electron gyroradius is small compared to wavelengths
of interest.

2. The wave electric field is essentially electrostatic, since
the plasma pressure is much smaller than the ambient magnetic energy
density.

3. The electron and ion densities are equal (quasineutrality)
since we are interested in wavelengths much larger than the Debye
length.

4. The ions and electrons are isothermal.

5. The waves are assumed to propagate exactly perpendicular to
the magnetic field, since these waves suffer the least diffusive
damping.

6. The electron inertia is neglected, because the electron-
neutral collision and cyclotron frequencies are much larger than the
wave frequency Doppler-shifted to the electrojet drift frame.

7. Ion inertia is also neglected for the same reasons as in (6).

With these restrictions the fluid equations are:
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where o denotes electrons (e) or ions (i) and " ne(ZY'i-l/'e), E =-v¢
is the electric field, B is the geomagnetic field, u, is the thermal
velocity, and v is the collision frequency with neutrals. All other
symbols have their conventional meaning. We adopt a Cartesian
coordinate system in which the magnetic field is aligned with the
x axis (north), the y axis is westward, and z direction vertically
upward. Eliminating algebraically the velocities ¥ Vi’ equations
(1)- (4) reduce to

on 2
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In the lower E region equatorial electrojet, the parameters are
-1 -1 -1
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Equations (5) and (6) can be linearized about the equilibrium

- 2

n (2) = N,(1 + z/L), dg /dz = a(z + )" where a = B(V2/9, - (1+ (v/2,) ) V]
and Vd is the electron drift velocity (in the y direction) at z = 0.
Fluctuations n = i exp{i[kyy *+k,z - (O iyk)t]} with k*B = 0 and
kyL >> 1 have frequency and growth rate given by [Rogister and
D'Angelo, 1970]
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where by = K(Te + Ti)/mi = (me/mi)ng + ng is the acoustic velocity.

Instability is possible if
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Note that L is positive for density increasing with altitude and

V4 is positive for electrons drifting toward the west, the usual

daytime conditions.




NONLINEAR THEORY

The minimum unstable wavelength for the ionospheric parameters
of the E-region from Eq. (9) is about 30 m. The radar backscatter
observations indicate very large nonthermal density fluctuations at
3 m. These fluctuations are stable and damped according to the
linear theory of the previous section and therefore should not be
excited. In addition, vertically propagating irregularities are
observed that cannot be accounted by linear theory. The explanation
lies in the fact that the unstable oscillations with wavelengths longer
than 30 m couple nonlinearly to these short wavelengths and in the
steady state the rate of excitation just balances the damping. How-
ever, one dimensional theories of nonlinear wave coupling [Sato and
Tsuda, 1967; Tsuda and Sato, 1967; Rogister, 1972] cannot explain
either the vertical Type II radar echoes [Farley and Balsley, 1973;
Balsley and Farley, 1973; Fejer et al., 1976] or the density fluctuation
amplitudes of 2-5% observed in rocket experiments [Prakash et al. 1969,
1970, 1972] for weak electrojet conditions when presumably Type II
irregularities dominate.

It was shown by Sudan et al. (1969) that a one dimensional
nonlinear wave steepening requires abnormally large fluctuating
amplitudes 30-50% and therefore the actual mechanism for such inter-
action must be two-dimensional in nature. Since
the group velocity of all the waves is the same viz. Vd/(l + y) the
wavepackets can couple strongly to each other because they stay together

for a long time. In the frame moving with velocity Vd/(l + V) with

oy




respect to the laboratory an unstable wave appears to be a purcly
growing wave since the real part of the frequency doppler shifts to
zero. A horizontally propagating wave will have local horizontal
density and potential gradients din/dy and d§/dy. Where the phase of
the wave is such that (dn(l)/dy)d¢(1}dy > 0, secondary short wavelength
oscillation propagating in the vertical direction will be driven
unstable in exact analogy to the primary waves driven unstable by

the equilibrium gradients (dno/dz) (d¢o/dz) > 0. In this manner it

is possible to generate shorter wavelength secondary waves and it is
also evident that the spectrum of these secondary waves is likely to
be isotropic in the plane transverse to the static magnetic field.
This theory can account for vertically propagating irregularities

and also predicted the two-dimensional turbulent nature of the Type II
irregularities experimentally verified by Farley and Balsley, 1973;
Balsley and Farley, 1973 and by Fejer et al., 1976.

The frequency spectra of the 3 m fluctuations measured by radar
backscattering techniques indicate that the peak of the spectra occurs
at a frequency which is given by Eq. (7). However, the frequency width
of the spectra is much larger than that given by the damping rate (8)
and indeed it is comparable to Wy g This is also indicative of the
strong interaction between wave;wleading to a nonlinear damping far
in excess of linear damping rate and may be explained as follows.
Suppose we launch a test wave with wave vector E_into a region of well
developed turbulence containing waves of all possible wavelengths
propagating in every direction. The test wave will immediately couple

to two other waves, k', k' whose wave numbers satisfy k = k' + k",
LA R LA B w




because the phase variation of the test wave will be synchronized

to the vector sum of the other two waves. Becausc the waves are
almost dispersionless and the group velocity of all the waves is
approximately equal such interaction could occur over a long time
and the transfer of energy from’lx; to '}5‘ and ~1§' would result in
rapid damping of the test wave.

The quantitative analysis of the nonlinear effects described
above has been undertaken by Sudan and Keskinen (1977) using a theory
of strong turbulence whose basic premise is the '"direct interaction
approximation' pioneered by Kraichnan (1959). The principal results
of this investigation are: (1) The steady state two dimensional
density fluctuation spectrum Ik is isotropic and follows a power law
k™™ where n lies between 2 and 4, but is closer to 3.2 if one accepts
radar data which shows that Ik = vﬁ at 3 m. The mean r.m,s. density
fluctuation predicted by this theory falls within the range of
observations. (2) The nonlinear damping rate or the frequency width

2,1/2

of the spectrum is given by (yi + Fk) where,

I = const. x BVy4 K2 Ikl/2 (10)

where B vi/Qi(l + ) and the constant is of order unity. This
expression is verified against radar observations and the simulation
results presented later,

On the other hand, Rognlien and Weinstock (1973, 1974) have

estimated the saturated amplitude of large scale gradient-drift

fluctuations using the nonlinear theory of perturbed particle orbits
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[Weinstock and Williams, 1971; Sleeper and Weinstock, 1972]. The
perturbed orbit theory is based on the supposition that an excited
spectrum of incoherent waves causes the stochastic diff ion of
collisionless orbits which leads to nonlinear wave damping. Since
the ions are collisional this concept cannot apply to them while the
magnitude of this effect on electrons is insignificant because the
electron gyroradius is negligible compared to unstable wavelengths.
Furthermore, such theories cannot explain the generation of short
wavelength or vertically propagating waves since explicit mode

coupling is not taken into account.
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NUMERICAL SIMULATIONS AND RESULTS

Equations (5) and (6) were solved numerically. A description
of the code and methods of solution is given in Ferch and Sudan
(1977). With the exception of the drift velocity, Vd, identical

parameters, typical of the daytime equatorial electrojet, were used:

B=3x107 Wn’, @ = 96 sec’!, o= 5.3 x 10° sec’?, v, = 2.5 x 10°
sec_l, Vg = 4 x 10* sec-l, ui = 10° mz/secz, ug = 5.5 % W m2/sec2.

Table 1 summarizes the models from which temporal and spatial
power spectra were computed. Each model was initialized with an
unstable horizontal wave together with a smaller amplitude vertical
perturbation. All models could be advanced in time until a quasi-
steady state had been achieved. Model 1, the most weakly driven,
required the most time (approximately 32 sec) to saturate. All
three models were run on a CDC 7600, with Model 1, for example, taking
about 1.5 hours of computer time.

As t increased the region of nonzero |5n(l\;),t)]2 cascaded to

larger values of (ky/ko, kz/ko) than those originally excited (1,0)

and (0,1); ko = 2w/L is the fundamental wavenumber and L = 128

is the system size. The time evolution of the maximum total density
fluctuation, amplitude of the initial 128 m horizontal wave, and the
maximun horizontal and vertical velocities for Models 1-3 are shown

in Figures la-lc. Density contour plots for Model 3, the most strongly
driven CVd = 125 m/s), at t = 0, 2, 4, 12, 26, 34 secc are displayed in
Figures 2a-2f. Density contour development for Models 1 and 2 is

similar to Model 3,




The behavior of Model 3 is illustrated in Figure le-1f and

2a-2f. The maximum total density fluctuation and maximum hori-
zontal and vertical velocities, which peak in an earlier time
interval, t = 3-5 sec, than the other less strongly driven models,
attain values of approximately 14.8%, 425 m/s and 300 m/s, respec-
tively, whereupon they relax and descrite a quasi-steady state.

By t = 1 sec, the maximum horizontal and vertical veloucities were
comparable to the originai drift velocity. At t = 2 sec, small
scale turbulence is seen from the density contour plot. In Models
1 and 2, similar behavior is observed but on a longer time scale
with smaller density fluctuations and velocities. In Model 1, the
density fluctuations and horizontal and vertical velocities peak

near t = 6-8 sec reaching values of 11.8%, 250 m/s, and 200 n/s,

respectively.




SPATIAL POWER SPECTRA

Let the spatial power spectra in the quasi-steady state be
defined as I(k,t) = (L/Zwr)2<|6an,t)/nolz> where én = n-n_(z)
and L% is the area of the mesh. In the quasi-steady state the
ensemble average is understood to be equivalent to a time average.
In order to analyze the degree of isotropy of the spectrum, we
expand in Fourier series as follows,

N

I(k,t) = I(k,t) + (fn(k,t) cos ng + g (k,t) sin no)

n=1
where the sum over n is restricted to positive integers and k = |k|.
Box normalization and periodic boundary conditions have been employed.

The Fourier coefficients are

VAl
o 3
I(k,t) = _Z_FI de I(’b,t)
)
27
- 1
fn(k,t) = FI de I(ll'\’,t) cos né
0
U
gn(k,t) = %‘- T de I(].f-’t) sin nd

(o]

From synﬁnetry considerations (én(y,z,t) real) the odd-numbered coef-
ficients vanish. The angular integrals are computed in discrete

(lSl’kz) space using a block-integration nearest grid-point scheme.

The fn(k,t) and gn(k,t) were evaluated for k in the range 1 < k/k0 £ 14,

This is equivalent to a wavelength regime A = 2n/k of 9 m g A < 128 m.

Although in all three models the cell spacing was 2 m, spectral




information for A £ 9 m was disrcgarded due to insufficient spatial
resolution and aliasing limitations. Initially, a 15-term fitting
function was used, i.e., an isotropic term and equal numbers (7) of
sin n® and cos n® harmonics with n = 2, 4, ..., 14. Equal numbers
were used due to the suggested isotropy of the spatial power spectra
[McDonald et al., 1974, 1975; lerkic et al., 1977; Ferch and Sudan,
1977]. Figure 3 shows sample Fourier coefficients computed from
spectra averaged over 2 sec near the beginning of the quasi-steady
state of Model 2 and indicate an approximate power law in k for

1<« k/ko < 14. Similar results are found for Models 1 and 2.

Absolute Fourier coefficients as bn can then be defined using

the best-fit spectral indices, Py in the following manner:

I(k,t) = ak ™ + ] (a,kPn cosno+ bnk"‘-n sin ne)

n

with the a, bn found from least squares fitting. For time averaged i
spectra taken during the middle and end of the quasi-steady state

of Model 2, Table 2 gives the best fit spectral indices and relative
magnitudes (an/ao, bn/ao) of the best fit coefficients that exceeded
0.1 and indicates that the power spectra are approximately isotropic.
Similar results were obtained for the other two models. The best

fit spectral indices were computed using a least squares fitting

routine with errors equal to the standard deviations. The uncertainties
in the relative coefficients reflect the statistical error in the

mean of the time-averaged spectral estimates.
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The computed power laws of the spatial power spectra I(k) v k'n,
n = 3-4, for A:9-128 m are in agreement with previous rocket data
(n =3+ 1; A:1-15 m, Prakash et al., 1969, 1970), recent numerical
studies (n = 3.5; A:9-75 m, McDonald et al., 1974, 1975; n = 3 + 1;
A:9-128 m, Ferch and Sudan, 1977) and dimensional arguments (n > 3,
Ott and Farley, 1974). In addition the isotropic nature of the
computed spatial power spectra for A:9-128 m compares favorably with
recent radar measurements of Type II irregularities at A = 3 m
[Ierkic et al., 1977].

It is of interest to study in more detail the isotropic part of
the k-spectra. Figures 4a-4d illustrate the time evolution of the
angle-averaged power spectra, vi?., I(k) = (21r)-1 i“de I(k,0) at
t =0, 2, 13, 25 sec for Model 2 (Vd = 100 m/sec). Initially, only
one wavenumber k = 1 is excited (k is scaled in terms of the fundamental
ko =2 /128 m'l). The initial power residing in k = 2 to 14 is not
physical but numerical in origin and results from discrete Fourier
transformation. In the linear stages of the simulation, the power
in the initially excited unstable mode increases. As the turbulence
develops, the power in the linearly damped portion of the spectrum
(k > kc = 3) also increases. Finally, nonlinear interactions in the
fully developed turbulence has reduced the power in the initial wave-
number and brought the spectrum roughly in accordance with a power law.

In Fig. 5, for the quasi-steady states of Models 1-3, I(k) is
plotted as a function of drift velocity V4 for several wavelengths.
These curves indicate that the spectra follow an approximate power

law in Vd’ i.e., I(k) « Vg. Unfortunately, due to numerical instabilities




and computational cost, a larger range of drift velocities could not
be studied. From radar backscatter observations at 3 m, a quadratic
dependence of scattering cross seciion on drift velocity Vd has also

been inferred [Balsley, 3969; Farley and Balsley, 1973].




TEMPORAL POWER SPECTRA

The temporal power spectra [(k,w) « <|6n(k,w)]2> were computed
(see Appendix A) using the direct method [Blackman and Tukey, 1959].
Power spectral estimates from different time blocks were averaged
to reduce the variance. The sampling frequency was chosen to be
always greater than twice the frequencies in which there was measurable
power in order to minimize aliasing. In many cases the spectra were
further smoothed over adjacent channels using a Hann window. Final
spectra at a particle (ky’kz)’ i.e., at a particular wavelength and
angle to the electrojet drift, consisted of an average over 20.5 sec
in the quasi-steady states of the three models. Several sample
spectra were computed in order to estimate a sampling frequency which
was taken to be 50 sec’l. Both 128 and 256 point transforms were
used. By choosing ny, = ky/ko, h, * kz/k0 to lie between 0 g n, < 14
and -14 < n, < 14, spectra are available from considerations of
symmetry that cover the range 0° < 6 < 360° and 9 m < A < 128 m where
A = 2n/k and tan-l(ky/kz). Figures 6a-6c give sample computed
spectra together with radar obtained spectra [Balsley and Farley,
1971] taken in the daytime equatorial electrojet for equivalent
conditions. For A = 9 m many of the computed spectra were of poor
quality when integration times were less than 2 sec., All spectra
were normalized to their maximum values. The principal characteristics

of the spectra are their mean frequencies and average widths. We have

analyzed for the three models the frequencies and widths of the computed

spectra throughout the range of X and 6.




MEAN SPECTRUM FREQUENCIES

The spectrum frequency, w/2m, is taken to be the average of the
upper and lower half-power points, Extraneous peaks at zero fre-
quency were disregarded. In Figures 7a-7c are displayed for Models
1-3 (Va = 75, 100, 125 m/s) the computed spectrum frequencies as
a function of k at the following fixed angles to the electrojet
drift (also the principal radar angles): 90° (vertical), * 45°,
£ 30°. Also included at each angle are the frequencies of modes
that propagate within 7.5° of these chosen angles. Positive angles
refer to upward moving waves, negative angles to downward moving
waves. Because some spectra were noisy all points could not be
paired at the opposite angle. The linearly damped (k > kc) and
growing (k < kc) modes are indicated along with the frequencies
derived from the linear dispersion relation. The maximum error
in each spectrum frequency is estimated to be 0.2 Hz, At the angles
shown, the average spectrum frequencies computed from the quasi-
steady turbulent state at the three drift velocities over the range
of wavelengths 9-128 m are not, within error bounds, appreciably
different from the linear results except at large k (short wave-
lengths). At these angles, aside from the vertical (90°), the com-
puted spectrun frequencies are proportional to wavenumber, w o k.
Figure 8 illustrates for Model 2 (Vd = 100 m/s) the good agreement
between the computed phase velocity, w/k, in the steady turbulent
state and the predicted dependence from linear theory, viz.,

w/k = Vd(l + w)-l cos9., Similar fits are found for the other two

models.
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These results imply that even in the quasi-steady turbulent I

state with turbulent velocity fluctuations §V on the order of the

mean drift Vd (see Fig. la-1c), the average frequencies can be
found with the linear dispersion relation using the drift velocity

Vd.

AVERAGE SPECTRUM WIDTHS

The average spectrum width, Aw/2m, is defined as the difference
between the upper and lower half-power points. In Figures 9a-9c
are displayed, for the three drift velocities, the mean spectral
width as a function of k at the same angles. Linearly growing and
damped wavelengths are also indicated and the linear damping rates
shown. The maximum error in each computed spectrum width is
estimated to be 0.4 Hz. At the angles shown, there is a definite
trend for the average widths to increase with k, for all three

drift velocities, a feature also noted in radar backscatter obser-

vations at 3 and 9 m [Balsley and Farley, 1971]. In addition, the

widths at all angles and for all three drift velocities exceed the

linear damping rates. Moreover, at fixed Kk, the width of the spectra
of the linearly damped wavelengths increase with increasing drift
velocity, a feature not predicted by linear theory. There seems to
be no appreciable difference between the mean widths computed for the 4
upward moving waves as compared to those of the downward moving :
waves except perhaps at large k. The exact dependence of Aw on k,

throughout the range of wavelengths studied, is not well-defined,
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although, for cxample, the mean widths of the vertical modes (90°)
for Model 2 fit well a power law in k, Aw " k" with n = 0.8. Figure
10 shows Aw/w at 6 = 45° for Models 1-3. Over the range of k,

Aw/w exceeds 0.5 indicating strongly turbulent fluctuations. This
is in rough agreement with radar observations [Balsley and Farley,
1971]. Similar plots are found for the other two models.

To examine the dependence of angle-averaged spectral width on
wavenumber k for wavelengths not previously studied with radar, we
have plotted in Figure 11 the numerically obtained angle-averaged
frequency spread vs. k for the three drift velocities Vq = 75, 100,
125 m/sec. At all three drift velocities, the angle-averaged widths

increase approximately monotonically with k. We have fitted these

i)l/Z

where Yi is the linear growth rate and T} is the predicted linewidth

data, for each drift velocity, with a function of the form (yﬁ + [

from Eq. (10). This function gives a reasonable fit after adjusting
I by a constant of order unity. In this connection it would be useful
to study the spectral characteristics of wavelengths greater than 9 m
by radar.

The numerically obtained angle-averaged spectral width as a
function of drift velocity V4 for several wavelengths is displayed
in Figure 12, At theseewavelengths the data shows that the angle-
averaged frequency spread is roughly proportional to Vg with m = 1.5-2.5.
From radar observations [Balsley, 1969; Farley and Falsley, 1973] it

has been inferred that I(k) « Vﬁ giving for the angle-averaged spectral
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broadening Py = Vﬁ. This agrees reasonably well with the curves

shown in Figure 12. The experimentally observed linewidth Aw from i

9 m Type II radar backscatter observations [Balsley and Farley,
1971] is shown in Figure 13 as a function of drift velocity Vi

The dependence of Aw with V4 appears linear as opposed to the
quadratic results indicated by theory and the present numerical
simulations. However, it must be noted that these results are
obtained from one zenith angle and not angle-averaged. Furthermore,

the effects on spectral width of the changing scattering volume is

not well-defined throughout the range of drift velocities shown.




TEST WAVES

The magnitude of the power spectra of the short wavelength
irregularities (A < 10 m) is much smaller than the fundamental
(A = 128 m) by as much as four or five orders of magnitude. In
order to study more closely the turbulent damping at the shorter
wavelengths, test waves of the form A sin(kyy + kzz = wkt) were
launched in the quasi-steady states. The decay rates, ril, of the
test waves were found to be of the order of the spectral width Aw
of the power spectra computed at the wavelength of the test waves.
The wavelength A and the propagation angle & of the test waves
were taken to be 9, 10 m and * 45°, respectively, with the amplitude
A fixed at 0.04. This amplitude corresponds to the approximate
quasi-steady state amplitude of the turbulent density fluctuations.
Figure 14 gives an example of the decay of a sample 10 m test wave
launched in the quasi-steady state of Model 2. Table 3 compares the
nonlinear damping as computed from the spectral width, test wave
decay rates, and the theoretical prediction for wavelengths studied
in Models 1-3. The agreement between spectral width and test wave
decay rates is reasonable, Better agreement cannot be expected since
the spectra were computed by averaging many samples whereas the test
wave decay rates are found using only one sample. However, the trend
of increasing spectral width with decreasing wavelength is also noted

in the decay rates of the large amplitude short wavelength test waves,
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CONCLUSION

We have computed the temporal and spatial power spectra from
numerical simulation of Type II irregularities in the daytime
equatorial electrojet. The overall level of turbulent density
fluctuation appears to increase with the electrojet drift velocity,
V&’ in the range 75-125 m/s. Appreciable excitation of vertical
and oblique waves is seen at drift velocities of 75 and 125 m/s.

This supplements similar results of Ferch and Sudan (1977) at
L 100 m/s and provides further support for the two-dimensional
model of Sudan et al. (1973).

At the three drift velocities studied (75, 100, 125 m/s) and in
the wavelength range of approximately 9-128 m the computed time-
averaged spatial power spectra I(k) are, on the average, found to
be isotropic and follow a power law in k(I(K) « kY n=354%0,5),
This is in agreement with experimental results [Prakash et al., 1969,
1971, 1972; Ierkic et al., 1977 for A = 9 m], numerical simulations
[McDonald et al., 1974, 1975; Ferch and Sudan, 1977] and dimensional
arguments [Ott and Farley, 1974]. In addition, some evidence is
found which suggests that I; « v

d’
observations [Balsley, 1969; Farley and Balsley, 1973].

in agreement with Type II radar

The numerically computed temporal power spectra compare favorably
with several 9 m Type II radar spectra taken in the daytime equatorial
electrojet [Balsley and Farley, 1971]. The numerical spectra are

computed with known electrojet parameters with the radar spectra
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being integrated over a small region of the electrojct due to limited
resolution (1-3 km). In addition, only a limited number of inter-
acting modes can be kept in the simulation due to finite grid size
and computer storage limitations and spectral integration times must
be minimized. These factors make direct comparison between numerical
and radar spectra difficult to assess.

In the turbulent quasi-steady states of the three models studied,
the mean spectrum frequencies of the numerically obtained spectra
agree well, within error bounds, with linear theory, except at short
wavelengths. The average spectrum widths, on the other hand, in the
wavelength range 9-128 m are greater than the linear damping rates
and increase with decreasing wavelength. Also, at a rixed wavelength,
the average widths of the linearly damped modes increase with drift
velocity in the range 15-125 m/s, a feature not predicted by the
linear theory of the gradient-drift instability. No appreciable
difference is seen in the spectral widths of the upward moving waves
as compared with the downward moving waves. Mreover the width to
mean ratios of the computed spectra suggest strongly turbulent
fluctuations in agreement with radar observations [Balsley and Farley,
1971].

There remains some noise-like features in the computed spectral
characteristics of the short wavelength (A < 10 m) irregularities.
This is to be expected due to resolution limitations. In the models
studied a grid mesh of 64 x 64 points is used which allows Fourier
components of up to wavenumber 32 in each direction. Components with

wavenumbers greater than 16, therefore, are subject to possibly serious

T e




distortion from aliasing errors. The highest wavenumber studied in

Model 1-3 was 14 (9.1 m). The overall trend of increasing line-
width with decreasing wavelengtii is noted in the decay rates of the \
large amplitude short wavelength test waves. The effects on the

spectra at the short wavelengths due to other sources of error, e.g.,

spatial and temporal truncation errors, could not be fully investigated

due to the high computational cost of the spectral integration times.

However, in Model 3, after restarting near the quasi-steady state,

several short wavelength spectra were computed after halving the

time step thereby reducing the time truncation error. No appreciable

differences were found in spectral features.

Finally, the power law (Ik « k1

, n = 3-4) of the turbulence and
the scaling of the frequency broadening Ty with wavenumber k and drift

velocity V, lend support to the strong turbulence theory of Sudan and

Keskinen (1977) which predicts ) « vy k* I/2 with I, « k'™, n = 3.2.




=2€.

ACKNOWLEDGMENTS

We thank D. T. Farley, B. Fejer, and M. lerkic for valuable
discussions and B. Balsley for providing unpublished data. All
computations were carried out on the CDC 7600 located at the
National Center for Atmospheric Research, Boulder, Colorado.
Acknowledgment is made to NCAR, which is sponsored by the NSF,
for this computing time. This work was supported in part by

NSF Grant #GA-35530X and in part by ONR Contract #N00014-67-A-

0077-0031.




APPENDIX A:

METHOD OF QOMPUTING TEMPORAL POWLR SPECTRA

Fourier expanding én(x,t) over a square of edge L in the time

interval T
sn(x,t) = ZGn(}&,w) exp{i(k;x - wt)} (A.1)
k,w
5 X 3,21 f 2 "
n(l:.,w) = (2m) “(L°T) d™x dt Gn(ic',t) exp{ 1(1;-3(’- wt)} (A.2)

where P % 0,2), k,= ('ky,kz) and defining the normalized temporal

power spectrum Ik

v’w
Sn|2_ _ 2
sl >’Jdkd“1k,m (A.3)
o~
we find for homogeneous and stationary turbulence
2
I, - lim L T;5 - Gn(nbzw) 2, (A.42)
. "
-~ L, T (&w) (o}

where the angle brackets denote an ensemble average, viz., the average
over a large number of identical systems of which the system under
study is a member. In the quasi-steady state, the ensemble average

is equivalent to a time average over any one system of the ensemble.
This direct method of computing the temporal power spectra is more

desirable than the method of autocorrelations due to computer storage




limitation and the relative speed of the fast Fourier transform (FFT).
Both methods can be shown to be equivalent [Blackman and Tukey, 1959].
In order to compute {5 E in practice we must first compute
6n(k,w) which in discrete form can be written for fixed‘k
N-1

L1 en(k,jat)exp{-2nije/N} (A.5)
j=0

sn(k, 2A£)

where N is the number of time samples, £ =0, 1, ..., N-1, j =0, 1,
eesy N-1, Af = T, T the total integration time, At is the sampling
period. Power spectral estimates from successive time blocks were
averaged to reduce the variance. The sampling frequency (At)'l was
chosen to be always greater than twice the frequencies in which

there was measurable power in order to minimize chasing. This was
accomplished by first computing the highest frequencies in the
system. In our case, these were found at the shortest wavelengths

(14 g k/ko 210, 9mg X <12m). In Mdels 1-3, the maximum
frequencies corresponding to these short wavelengths was found, by

trial and error, to be less than 10 sec !,
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FIGURE CAPTIONS

Figure 1. Maximum total density fluctuation én/n, amplitude of
initially growing mode Al,O’ and maximum horizontal and vertical
turbulent velocities Vh and V, as function of time in seconds.
(a) Model 1.

(b) Model 2.

(c) Model 3.

Figure 2. Contour plots of density fluctuation én for Model 3
(Vd = 125 msec-l). Contour lines represent equal increments in
dn between maximum (+ signs) and minimum (- signs). Horizontal
axis is y(direction of electron drift) and vertical axis is

z(vertical). Scale for A1 0 reads one half of 6n/n scale.
>

(a) t=0,6n/n=.04, A =614, Vy .= 100.
() t=2,6n/n=.06, Ay o= 9.22, Vy =173,
(© t=4,6n/n= .14, A (= 13.61, Vi . = 427.
(&) t=12, én/n= .07, A o= 5.8, Vg . = 251
(&) t =26, 6n/n = .068, A = 4.83, Vi . = 212,
(£) t=34, én/n = .06, Ay (= 4.53, Vy 0 = 192.

Figure 3. Sample time averaged Fourier coefficients I(k) denoted by
closed circles, and fz(k) denoted by open circles, computed near

beginning of quasi-steady states of Model 2.

. % « - 1 J
Figure 4. Time evolution of I(k) vs. k for Model 2 (Va = 100 msec 7). !

(a) t =0 sec.
(b) t =2 sec.
(c) t =13 sec.
(d) t = 25 sec.




Figure 5. Plot of I(K) vs. V4 for several wavelengths A in the quasi-
steady states of Models 1-3.
Figure 6. Comparison between computed and radar-obtained power |

spectra I, vs, frequency in Hz. Solid curve from numerical simu- ~

lation; dotted curve from radar backscatter observations at 16.25

MIz (A = 9.2 m) [Balsley and Farley, 1971]; Aw/2m is the difference
of the frequencies at the upper and lower half-power points.

(a) Radar spectrum received from 60° east of vertical; simulation

spectrum taken at tan 1 (ky/kz) = =30. 2%,

o e

(b) Radar spectrum received from 45° west of vertical; simulation

1 spectrum taken at tan" L (ky/kz) = 45°, 1
(c) Simulation spectrum taken at tan” 1 (ky/kz) = 90° and é
Zn/(ki + kg)l/2 = 16 m. Vertical 9 m spectra have not been studied

with radar due to critical frequency limitations.

Figure 7. Computed spectrum frequencies as functions of k for

Models 1-3. The spectrum frequency w/2m (Hz) is the average of the

o

frequencies at the upper and lower half-power points. Solid-dashed

line is frequency from linear theory at Yq 125 msec-l; solid line

for Vﬂ = 100 msec-l; dashed line for Vd =75 msec—l. Arrow marks
critical wavenumber kc from linear theory.

(a) o= tan-l (ky/kz) = 90°; linear theory predicts nonpropagating
vertical modes.

(b) 6 = 45°, -45°,

(c) e = 30°, -30°.
Figure 8. Comparison of computed phase velocity, w/k, in steady state

with predicted dependence from linear theory (w/k « cos 8) for Model

Z (Vd = 100 msec-l). Solid line is linear theory at Va = 100 msec‘l.

s
|
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Figure 9. Computed spectrum line width as functions of k for Models
1-3. Solid line is linear damping rate. Arrow marks critical wave-

number kc from linear theory.

(a) 6 = 90°.
() 6 = 45°, -45°,
(c) o = 30°, -s50°.

Figure 10. Plot of Aw/w for Models 1-3 at 6 = 45°,

Figure 11. Comparison between numerically obtained angle-averaged
spectral widths and predicted angle-averaged nonlinear frequency
broadening Pk vs. k for Models 1-3  Dots, circles, and triangles
show Aw from simulation averaged over angles; dotted curve gives

¥ from linear theory; solid lines show (Fﬁ + yi)l/z; at large k,
Yk is comparable to Pk in simulations; numerical factors are adjusted
for best fit.

Figure 12. Plot of computed angle averaged spectral linewidth Aw
Vs, V& at several different wavelengths; numerical factors are
adjusted for best fit.

Figure 13. Plot of Aw vs. electrojet drift velocity V4 from radar
observations at 45° [Balsley and Farley, 1973] for A = 9 m.

Figure 14. Plot of decay of squared amplitude of 10 m test wave vs.

time in seconds launched in Model 2. Decay time z is taken to be

time at which amplitude falls to e_1 of initial amplitude.
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